
QEX July/August 2020 7

extreme weak-signal performance on the VHF, UHF, and microwave
bands. These modes use transmit and receive sequences of one
minute, so two-way contacts generally require at least four minutes.
By reducing the T/R sequences to just 15 seconds, optimizing the
LDPC decoder in several important ways, and accepting a sensitivity
loss (relative to JT65) around 4 dB, FT8 seems to have struck a sweet
spot for DXing and general use on the HF, VHF, and lower UHF
bands. FT4 accepts a further 3.2 dB loss in sensitivity but is twice as
fast as FT8, and is potentially attractive for contesting at high QSO
rates.

In this paper we provide full documentation of the FT4 and FT8
protocols and outline how the modes are implemented in WSJT-X.
We present detailed performance measurements based on simulations
over the additive white Gaussian noise (AWGN) channel and a range
of standard International Telecommunications Union (ITU) models
for HF propagation [12]. WSJT-X is an open source program licensed
under version 3 of the Free Software Foundation’s General Public
License (GPLv3). We provide some guidelines and a few restrictions
on the use of our freely available source code by others.

 2. Structured Messages and Source Encoding
FT4 and FT8 transmissions always convey exactly 77 bits of

user information. Mappings between human-readable messages
and the underlying information bits depend on designed-for-the-
purpose compression techniques known as source encoding. The
basic aim is to give the 77-bit information payload maximum utility
for conveying the information necessary for basic station-to-station

contacts. To facilitate efficient
message compression for a range of
targeted purposes, we allocate three
bits to specify one of eight possible
message types. The remaining 74
bits are for user information, with
source-encoding details that depend
on message type. Types are tagged
with an integer variable that we call
i3, and types that require fewer
than 74 information bits can use the
remaining bits to define subtypes
tagged as i3.n3.

Table 1 presents a summary of

Steve Franke, K9AN Bill Somerville, G4WJS Joe Taylor, K1JT

The FT4 and FT8
Communication Protocols

Motivation and design of the digital modes FT4 and FT8,
and some details of how they are implemented in WSJT-X.

1. Introduction
FT4 and FT8 are digital protocols designed for rapid and accurate

communication between amateur radio stations, particularly in weak-
signal conditions. Information exchanged in a minimal two-station
contact typically consists of call signs, four-character Maidenhead
locators, signal reports, and acknowledgments. Special message
formats support a few popular radio contests, and arbitrary text can
also be conveyed, though only in small quantities. FT8 was introduced
in July 2017 with version 1.8 of the software package WSJT-X [1,
2]. It quickly gained world-wide popularity, by some measures soon
accounting for a large fraction of all ham radio activity on the high
frequency (HF) bands [3]. FT4, a similar but faster protocol designed
especially for radio contests, was introduced two years later in
WSJT-X version 2.1.

The new protocols build on the legacies of JT4, JT9, JT65, and
other digital modes pioneered in WSJT-X and its parent program
WSJT, going back nearly 20 years [4-11]. These modes all use time-
synchronized transmissions and structured messages with lossless
compression of standard call signs, grid locators, and other basic
information into a minimum number of bits. Strong forward error
correction (FEC) is an integral part of each mode. FT8 and FT4 use a
low density parity check (LDPC) block code designed and optimized
specifi cally for this application.

Fundamental tenets of communication theory imply trade-offs
involving message length, signaling rate, bandwidth, error-control
coding, modulation type, decoding complexity, and minimum
required signal-to-noise ratio (SNR). Earlier digital modes found
in WSJT-X, including JT4, JT65, and QRA64, were optimized for

Table 1 - Defi ned message types for the 77-bit payloads of FT4, FT8, and MSK144.

Type i3.n3 Purpose Example message Bit-fi eld tags
0.0 Free Text TNX BOB 73 GL f71
0.1 DXpedition K1ABC RR73; W9XYZ <KH1/KH7Z> -08 c28 c28 h10 r5
0.3 Field Day K1ABC W9XYZ 6A WI c28 c28 R1 n4 k3 S7
0.4 Field Day W9XYZ K1ABC R 17B EMA c28 c28 R1 n4 k3 S7
0.5 Telemetry 123456789ABCDEF012 t71
1. Std Msg K1ABC/R W9XYZ/R R EN37 c28 r1 c28 r1 R1 g15
2. EU VHF G4ABC/P PA9XYZ JO22 c28 p1 c28 p1 R1 g15
3. RTTY RU K1ABC W9XYZ 579 WI t1 c28 c28 R1 r3 s13
4. NonStd Call <W9XYZ> PJ4/K1ABC RRR h12 c58 h1 r2 c1
5. EU VHF <G4ABC> <PA9XYZ> R 570007 JO22DB h12 h22 R1 r3 s11 g25

3314 E. Anthony Dr., Urbana, IL 61802;
k9an@arrl.net

Glendella, Wycombe Rd., Stokenchurch,
High Wycombe HP14 3RP, England;
g4wjs@classdesign.com

272 Hartley Ave., Princeton, NJ 08540;
k1jt@arrl.net

Reprinted with permission; copyright ARRL.

8 QEX July/August 2020

all currently defi ned message types. Each type has a defi ned human-
readable format that is mapped into a sequence of fi xed-length bit
fi elds, each conveying specifi c information relevant to the type.
Successive columns of Table 1 show for each message type the
number i3 or i3.n3, the basic purpose, an example message, and
a sequence of one or more bit-fi eld tags. Numbers in the tag names
indicate the number of bits in that fi eld, and the total number of bits,
including n3 (if used) and i3, is always 77.

Table 2 identifies the type of human-readable information
conveyed by each distinct bit-field tag. The tags include ones
to encode call signs, Maidenhead locators, signal reports,
acknowledgments, various logical fl ags, and permissible exchanges
for a few special operating activities such as VHF contests, ARRL
RTTY Roundup, and ARRL Field Day.

Standard amateur call signs can be conveyed in 28 bits, but
compound calls such as PJ4/K1ABC and special-event calls
like YW18FIFA may require more than twice that number. To
accommodate such special calls, message type 4 allows use of one
arbitrary call sign with up to 11 alphanumeric characters. The other
call sign in such messages is sent as a hash code of just 12 bits.
Such a mapping from call sign to hash code is uniquely defi ned,
but obviously the inverse mapping cannot be unique. When the
WSJT-X receiving software fi nds a message containing a hash code
it displays the most recently decoded call sign mapping to that code
(or perhaps “mycall”, if it maps to that code), enclosed in angle
brackets: for example <PJ4/K1ABC>. If no call sign is available
for the received hash, the missing information is displayed to the
user as <...>. Different message types may use different hash
code lengths. For example, message type 0.1 always sends the
transmitting station’s call sign as a 10-bit hash code, and message
type 1 conveys any call enclosed in angle brackets as a 22-bit hash
code. Hash code “collisions” are possible, of course, but in practice
we fi nd they are rare. Further low-level details of these and other
source encoding algorithms, including ranges of permitted values,
can be found in Appendix A.

 3. Error Detection and Error Correction
A 14-bit cyclic redundancy check (CRC) is appended to each

77-bit information packet to create a 91-bit message-plus-CRC
word. The CRC is calculated on the source-encoded message,
zero-extended from 77 to 82 bits. The CRC algorithm uses the
polynomial 0x6757 (hexadecimal) and an initial value of zero
(see [13, 14] for further details). Another 83 bits are appended for
forward error correction, creating a 174-bit codeword.

Forward error correction is accomplished using a (174, 91)
LDPC code designed specifi cally for FT8 and FT4. The code is
defi ned by two matrices: a generator matrix used to compute the
83 parity bits appended to each 91-bit message-plus-CRC word,
and a parity matrix that can be used to determine if a given 174-bit
sequence is a valid codeword. All values in both matrices are either
0 or 1, and their related operations use modulo 2 binary arithmetic.
The generator matrix has 83 rows and 91 columns. It is defi ned in a
fi le generator.dat and included along with a number of other
useful fi les in reference [14]. Nonzero values in row i of the matrix
specify which of the 91 message-plus-CRC bits must be summed,
modulo 2, to produce the ith parity-check bit. Similarly, a file
parity.dat [14] defi nes the sparse 83  174 parity-check matrix.
The locations of the 1s in each row of this matrix specify which bits
of a 174-bit codeword must sum (modulo 2) to zero. The 174-bit
word is a valid codeword only if all 83 sums are zero.

4. Channel Symbols and Modulation
FT8 messages are transmitted using 8-tone continuous-phase

frequency shift keying (CPFSK). Each transmitted tone or channel
symbol conveys three bits. The sequence of 174 codeword bits is
mapped onto a sequence of 174/3 = 58 channel symbols an, with n
running from 0 to 57. The value of each symbol corresponds to a
tone index in the range 0 to 7. Groups of three consecutive message
bits are mapped to channel symbols using a Gray code defi ned by
columns 1 and 2 of Table 3. This mapping ensures that bit triads
associated with adjacent tones differ in only one bit position, thereby
improving decoding performance on channels where Doppler
spread is comparable to the tone separation.

FT4 is similar but uses 4-tone CPFSK, so each channel symbol
conveys only two message bits. The sequence of 174 codeword bits
is mapped onto a sequence of 174/2 = 87 channel symbols an, n = 0,
1, 2, ..., 86, with each symbol value an integer tone index in the
range 0 – 3. Pairs of successive message bits are mapped to channel
symbols according to the Gray code defi ned by columns 1 and 3 of
Table 3.

Tone patterns known as Costas arrays are embedded in FT8
and FT4 waveforms to allow the receiving software to synchronize
properly with received signals in both time and frequency. For
FT8 we use the seven-tone sequence 3, 1, 4, 0, 6, 5, 2 inserted at
the beginning, middle, and end of the transmitted waveform. If

 Table 2 - Assigned purposes for the bit fi elds listed in
Table 1. Numbers in the tags indicate the number of bits
in that fi eld.

Tag Information conveyed
c1 First callsign is CQ; h12 is ignored
c28 Standard callsign, CQ, DE, QRZ, or 22-bit hash
c58 Nonstandard callsign, up to 11 characters
f71 Free text, up to 13 characters
g15 4-character grid, Report, RRR, RR73, 73, or blank
g25 6-character grid
h1 Hashed callsign is the second callsign
h10 Hashed callsign, 10 bits
h12 Hashed callsign, 12 bits
h22 Hashed callsign, 22 bits
k3 Field Day Class: A, B, ... F
n4 Number of transmitters: 1-16, 17-32
p1 Callsign suffi x /P
r1 Callsign suffi x /R
r2 RRR, RR73, 73, or blank
r3 Report: 2-9, displayed as 529 – 599 or 52 - 59
R1 R
r5 Report: -30 to +32, even numbers only
s11 Serial number (0-2047)
s13 Serial Number (0-7999) or State/Province
S7 ARRL/RAC Section
t1 TU;
t71 Telemetry data, up to 18 hexadecimal digits

Table 3 - Bi-directional Gray mapping between message
bits and channel symbols.

Channel Symbol FT8 Bits FT4 Bits
0 000 00
1 001 01
2 011 11
3 010 10
4 110
5 100
6 101
7 111

Reprinted with permission; copyright ARRL.

QEX July/August 2020 9

rate, usually measured in bauds.) The frequency deviation pulse is
normalized to have unit area,

  1, p t dt




 (2)

so the pulse weighted by symbol bn causes the carrier phase to
advance by 2hbn radians over the duration of the pulse. For
WSJT-X modes other than FT4 and FT8, p(t) is a rectangular pulse
with duration T and peak amplitude 1/T. For these modes the
instantaneous frequency deviation of the nth pulse is hbn/T.

The pulse amplitudes, bn, are integers in the range 0 – 7 for FT8
and 0 – 3 for FT4. With this convention the carrier frequency fc is
the lowest tone frequency, i.e., the frequency transmitted during an
interval with bn = 0. The occupied bandwidth and spectral shape of
the CPFSK signal depend on the modulation index, h, the signaling
interval T, and the shape of the frequency deviation pulse p(t). These
parameters are summarized in Table 4, where for comparison we
include, in addition to FT4 and FT8, several other modes supported
in WSJT-X. The modes JT4, JT9, JT65, and MSK144 use rectangular
frequency-deviation pulses, so their frequency deviations fd have
discontinuous jumps when bn changes from one signaling interval
to the next. Such jumps create relatively large spectral sidelobes in
the CPFSK signal. In FT4 and FT8 the sidelobes are minimized by
smoothing the frequency deviation function fd(t) with a Gaussian
filter. Waveforms generated in this way are called Gaussian
Frequency Shift Keyed (GFSK) signals.

Smoothing the frequency deviation waveform directly would
require a numerical convolution every time a new message is
generated. It is computationally more effi cient to apply the Gaussian
smoothing fi lter to an isolated rectangular pulse, which needs to
be done only once. The Gaussian-smoothed pulses can then be
superposed according to Equation (1) to obtain the GFSK frequency
deviation waveform. Such waveforms are equivalent to those
obtained by fi rst generating the FSK waveform with rectangular
pulses and then convolving it with a Gaussian smoothing function.

The GFSK Gaussian-smoothed pulse satisfying the normalization
condition (2) can be written in terms of the error function, erf(x), as

  1 erf 0.5 erf 0.5 .
2

t tp t kBT kBT
T T T

                        
 (3)

Here the constant 2 / ln 2 5.336...,k   and B is the smoothing
fi lter’s -3 dB bandwidth. The error function erf(x) is defi ned as

  2

0

2erf .
x

tx e dt


 
A Gaussian smoothing fi lter has a low-pass frequency response

with Gaussian shape. For FT8 we set the -3 dB bandwidth to
B = 2T-1, or BT = 2. FT4 uses a more heavily smoothed pulse with

Table 4 - Parameters of the CPFSK signals used for six modes in WSJT-X. Pulse amplitudes assume integer
values over the specifi ed ranges.

Mode T(s) Modulation index, h Pulse shape, p(t) Pulse amplitude, bn

FT4 0.048 1 Gaussian-smoothed, BT=1 0 – 3
FT8 0.160 1 Gaussian-smoothed, BT=2 0 – 7
JT4 0.2286 1 Rectangular 0 – 3
JT9 0.5760 1 Rectangular 0 – 8
JT65 0.3715 1 Rectangular 0, 2 – 65
MSK144 0.0005 0.5 Rectangular 0 – 1

the sync sequence is denoted S and the fi rst and second halves
of the information symbols by  0 1 28, ,...,AM a a a , and

 29 30 57, ,....,BM a a a , the complete set of 79 transmitted symbols
can be written as the sequence  , , , ,n A Bb S M S M S

.Synchronization in FT4 uses four different Costas arrays, defi ned
as follows:

 1 0,1,3, 2 ,S 
 2 1,0, 2,3 ,S 
 3 2,3,1,0 ,S 
 4 3, 2,0,1 ,S 

FT4 transmissions contain 87 information-carrying symbols. We
divide these into three groups of 29:

 0 1 28, ,..., ,AM a a a
  29 30 57, ,..., ,BM a a a

  58 59 86, ,..., .CM a a a

To minimize keying transients we add a special ramp symbol
R with tone index 0 that establishes slow transitions from zero
amplitude at the start and to zero at the end of each waveform.
A complete set of 105 channel symbols is then assembled as the
sequence of values

 1 2 3 4, , , , , , , , .n A B Cb R S M S M S M S R

5. Generated Waveforms
Both protocols use continuous-phase frequency shift keying,

which implies generated waveforms of the form

     cos 2 .cs t A f t t  

Here A is signal amplitude, fc is carrier frequency, t is time, and (t) is
phase. The phase term can be written as the integral of instantaneous
frequency deviation, fd(t),

   
0

2 , 0.
t

dt f d t    

This scheme guarantees that (t) is continuous, even across
discontinuous steps in fd. Signal amplitude A is constant, except for
enforced rise and fall times at the start and end of a transmission.
This constant-amplitude or constant envelope feature ensures
that nonlinear amplification of the signal will not generate
intermodulation products.

Frequency deviation fd(t) is evaluated as the weighted sum of a
sequence of pulses, p(t):

   . d n
n

f t h b p t nT  (1)

Here h is called the modulation index, weights bn are the channel
symbol values, p(t) is the frequency deviation pulse shape, and
T the signaling interval. (Note that T is the inverse of the keying

.

.

Reprinted with permission; copyright ARRL.

10 QEX July/August 2020

BT = 1. In the limit of very large fi lter bandwidth, 1,BT the
pulse shape p(t) defi ned by Equation (3) becomes rectangular and
equivalent to the pulse used to generate standard FSK as in the
older WSJT modes. The frequency deviation pulses actually used in
WSJT-X are plotted for comparison in Figure 1.

Duration of the smoothed FT4 and FT8 pulses is greater than the
signaling interval T, so successive pulses overlap. This intersymbol
interference (ISI) is introduced deliberately for the purpose of
shaping the emitted spectrum to reduce sidelobe levels. For the
values of BT used in FT4 and FT8, signifi cant ISI is present only
between immediately adjacent pulses. Thus, when summing pulses
to produce fd(t) using Equation (1), at time t it is only necessary to
include contributions from the pulse whose center is closest to t and
those immediately before and after it.

Figure 2 shows a portion of an FT4 frequency deviation wave-
form fd(t). It’s easy to see that corners of the waveform at symbol
boundaries have been rounded. As an example to illustrate the reduc-
tion in spectral sidelobes eff ected by using GFSK, Figure 3 shows
the spectrum of an FT4 signal and one generated using standard FSK
with no smoothing. The diff erence in sidelobe levels is striking. The

compact spectra of FT4 and FT8 signals make it possible for dozens
of them to occupy a spectral slice of a few kHz, with little or no inter-
signal interference.

FT4 and FT8 waveforms have constant amplitude except at the
very beginning and end of a transmission. FT8 signals are ramped up
gradually over a transition interval T/8, or 20 ms, at the beginning of
the fi rst sync symbol. The ramp function is a raised cosine,

   0.5 1 cos (8 /], 0 / 8.A t t T t T   

Figure 4 illustrates the FT8 ramp function and the leading part
of an FT8 waveform. The same taper is used in reverse to gradually
ramp down the signal at the end of the transmission. FT4 waveforms
are similarly soft-keyed, this time using raised-cosine tapers applied
over the full 48 ms duration of the special ramping symbols R,
described earlier.

6. Symbol Detection and Decoding
Sections 2 through 5, Appendix A, and resources in reference

[14] define the source encoding, error-correction coding, and
modulation scheme associated with the FT4 and FT8 protocols.
Any proper implementation of these protocols should strictly adhere
to these defi nitions. In this section we turn to a discussion of some
implementation-specifi c methods used in WSJT-X for detecting

0

0.2

0.4

0.6

0.8

1

1.2

–1 –0.5 0 0.5 1

p(
t)

t/T

BT = 1
BT = 2
BT = 99

–10

0

10

20

30

40

50

60

70

3 3.2 3.4 3.6 3.8 4

Fr
eq

ue
nc

y
D

ev
ia

tio
n

(H
z)

Time (s)

–100

–80

–60

–40

–20

0

0 500 1000 1500 2000 2500 3000

dB

Frequency (Hz)

FSK
FT4

Figure 1 — Gaussian-smoothed frequency deviation pulses. The
pulses labeled BT=1 and BT=2 are used to generate the FT4 and

FT8 frequency-deviation waveforms, respectively. The case BT=99
is essentially the same as the unfi ltered rectangular pulse that is
used to generate standard, unsmoothed FSK in JT65, JT9, and

other modes in WSJT-X.

Figure 2 — A segment of an FT4 frequency deviation waveform
generated using the Gaussian-smoothed frequency deviation

pulse with BT=1.0.

–1

–0.5

0

0.5

1

500 505 510 515 520 525 530 535 540

A
m

pl
itu

de

t (ms)

Figure 4 — The beginning of an FT8 waveform showing gradual
rise of the signal envelope over the fi rst 20 ms. FT4 uses a similar
raised-cosine ramp expanded to 48 ms duration. Time-reversed

ramp-down functions are used at the ends of transmissions.

Figure 3 — Average spectrum of an FT4 signal (GFSK, BT=1.0:
dotted line) and the spectrum of an otherwise equivalent standard

FSK waveform (solid line).

Reprinted with permission; copyright ARRL.

QEX July/August 2020 11

and decoding FT4 and FT8 signals. Other approaches are certainly
possible, and might be used by other software developers.

WSJT-X uses advanced detection and decoding techniques to
decode the weakest possible signals. Noncoherent block detection
over sequences of two or more channel symbols improves sensitivity
over single-symbol detection when the received signal maintains
phase coherence over multiple symbols [15]. Single-symbol
detection provides robust detection on rapidly fading channels,
while longer block lengths provide better sensitivity in slow fading
conditions. We use block lengths of N = 1, 2, and 3 symbols for FT8,
and N = 1, 2, and 4 for FT4.

Block detection is carried out by correlating received waveform
segments spanning N symbols with locally generated waveforms
corresponding to each of M N possible symbol sequences. Here M
is the number of different modulation waveforms (tones) used for
each mode, M = 8 for FT8 and M = 4 for FT4. For this technique
to provide sensitivity gains the received signal must be phase-stable
over the block length. Such detection is said to be noncoherent,
however, because phase continuity between sequences is not
assumed. Only the magnitude of the complex-valued correlation
is used, and detection is independent of phase differences between
the received signal and locally generated waveforms. Output from
the block detector is a set of M N positive real correlation values.
These are used to derive soft decisions for each of the N log2 M bits
conveyed by the N- symbol sequence.

Conversion of the waveform correlations to soft decisions is
accomplished using a soft demapper. The soft metric Lj for xj, the jth
bit associated with a particular symbol sequence, can be written as

:x 1 :x 0
max max ,

j j
j i ii i

L K C C
 

   
 

where
: 1

max
j

ii x
C is the largest correlation magnitude from the set

of MN/2 correlations between the received waveform and ideal
waveforms associated with bit sequences having xj = 1. Likewise, the
second term is the largest magnitude from the other half of the set of
correlations, associated with xj = 0. The normalization constant, K, is
adjusted empirically to optimize performance over a range of SNRs
and channel conditions. For example, consider block detection of
sequences of N = 3 successive FT8 symbols. Since each symbol
could have any one of M = 8 values, there are 83 = 512 possible
three-symbol waveforms to be correlated with each three-symbol
block of the received waveform. The resulting 512 correlation values
determine soft decisions for the 9 bits conveyed by the sequence. In
practice, WSJT-X calculates the 8 correlations required for single-
symbol (N = 1) detection fi rst, using a fast Fourier transform. The
single-symbol complex results are then combined to produce the
64 correlations required for N = 2 and the 512 correlations required
for N = 3 block detection, thereby avoiding needless redundant
calculations.

A set of 174 soft decisions is obtained for each block size. These
are submitted to the decoder, starting with the set for N = 1. If the
decoder returns a codeword whose 77-bit message produces a 14-bit
CRC that matches the decoded CRC, the algorithm terminates and
the decoded message is unpacked and displayed to the user.

Our decoder uses a hybrid approach that combines the fast,
iterative, belief propagation (BP) algorithm [16] with the more
sensitive but computationally expensive ordered statistics decoding
(OSD) algorithm [16]. In practice we fi nd that most received signals
are decoded with just a few iterations of the BP algorithm. When
BP fails to fi nd a valid codeword after a reasonable number of
iterations, the soft decisions are submitted to the OSD algorithm.
The OSD algorithm can provide several dB of additional sensitivity
under certain conditions. Our implementation of the OSD algorithm
incorporates the preprocessing rules from reference [17]. We
found that these shortcuts signifi cantly improve the computational
effi ciency of the OSD approach.

Our decoders can optionally make use of so-called a priori
(AP) information as it accumulates during a QSO. For example,
when you answer a CQ you already know your own call sign, that
of your potential QSO partner, and the type of message you expect
to receive if your reply is successful. Your decoding software
therefore “knows” what might be expected for at least 62 message
bits (29 for each of two call signs and /R fl ags, 1 for the R indicator,
3 for message type) in the next received message. With these bits
hypothesized as a conjecture, the decoder’s task can be reduced to
determining the remaining 15 bits of the message and ensuring that
the resulting solution is reliable. The use of AP information can
increase sensitivity by several dB at the cost of a somewhat higher
rate of false decodes.

Table 5 shows measured decoding thresholds for FT4 and FT8
derived from simulations, providing insight into the sensitivity gains
offered by block detection and OSD. Here and elsewhere in this
paper, quoted sensitivity thresholds are the signal-to-noise ratios in
2500 Hz bandwidth at which decoding probability is 0.5. Numbers
in the fi rst table row for each mode represent a baseline case with
single-symbol N = 1 detection and BP decoding. The next two rows
add block detection and block detection with hybrid (BP and OSD)
decoding. Column 2 gives results for the non-fading additive white
Gaussian noise (AWGN) channel, while columns 3 and 4 are for
channels with frequency spreads of 1 Hz and 10 Hz, respectively. See
Section 8 for more information about the channel models. One can
see that on the AWGN channel block detection improves sensitivity
by 1.6 dB and 0.7 dB for FT4 and FT8, respectively. Addition of
hybrid decoding provides another 0.6 dB and 0.5 dB. Overall, block
detection and the hybrid decoder offer 2.2 and 1.2 dB of sensitivity
improvement over the baseline case for FT4 and FT8, respectively.
On the mid-latitude disturbed channel, block detection improves
sensitivity by 1.3 dB and 0.5 dB, and overall improvements are 2.5

Table 5 - Decoding thresholds for three different channels and three decoding schemes.

Decoding Algorithm AWGN (dB) Mid-latitude Disturbed (dB) High-Latitude Moderate (dB)

FT4:
N=1; BP –15.3 –12.7 –10.4
N=1,2,4; BP –16.9 –14.0 –10.5
N=1,2,4; BP+OSD –17.5 –15.2 –12.2

FT8:
N=1; BP –19.6 –16.5 -
N=1,2,3; BP –20.3 –17.0 -
N=1,2,3; BP+OSD –20.8 –18.6 –8.6

Reprinted with permission; copyright ARRL.

12 QEX July/August 2020

and 2.1 dB. Doppler spread on the high-latitude disturbed channel
exceeds the FT8 tone spacing, and FT8 fails to achieve a 50%
decode probability at any SNR using only the baseline decoding
scheme. With its larger tone spacing FT4 outperforms FT8 on this
channel. Block detection does not offer signifi cant improvement in
this case — only 0.1 dB for FT4 — because coherence time on this
rapidly fading channel is comparable to or smaller than the durations
of the multi-symbol blocks.

After a signal is decoded we have the information necessary to
regenerate the waveform that was actually transmitted. We use the
regenerated signal as a reference to derive the time-varying, complex
gain function that describes the effect of the propagation channel.
Denote the real received audio signal by s(t) and defi ne a complex
reference signal by

      02 ,j f t tr t A t e  

where f0 is the estimated audio frequency of the decoded signal
and A(t) and (t) are the amplitude and phase of the transmitted
waveform. The time-varying complex channel gain function, g(t),
is obtained via:

     * ,g t LPF s t r t   
where LPF[] represents a low-pass fi lter and * represents the
complex conjugate. The low-pass fi lter cutoff is optimized for best
performance with real signals received under a range of different
propagation conditions. The estimated channel gain function is
applied to the ideal reference signal to reconstruct a nearly noiseless
version of the received signal’s waveform, including channel-
induced amplitude fading and phase variation. The reconstructed
signal is then subtracted from the received data, i.e.

       2s t s t g t r t     R

where   R takes the real part of its argument, and s’(t) is the audio
waveform after subtracting the decoded signal. This subtraction
process can uncover weaker signals that occupy the same frequency
slot as the subtracted strong signal. The weaker signals can often be
decoded on a second decoding pass, after all signals decoded in the
fi rst pass have been subtracted.

WSJT-X analyzes an audio waveform that may contain many
signals in the received passband. A decoding pass starts by identifying
all likely signals, or candidates, using spectral analysis. Then, for
each candidate in succession, our procedure is to (1) synchronize,
estimating the frequency offset from the upper-sideband dial
frequency and the time offset with respect to the computer’s system

clock; (2) determine soft decisions for each of three block lengths and
attempt to decode each one using either BP alone or BP+OSD; (3) if
the decode is successful, subtract the signal. If at least one signal is
decoded and subtracted in the fi rst decoding pass, the remaining audio
waveform is re-analyzed. New candidates are identifi ed and steps 1
through 3 are carried out for each one. If at least one new signal is
decoded and subtracted in the second pass, a third pass will sometimes
yield decodes missed in the fi rst two passes. Multi-pass decoding has
proven very effective: the approach is often able to decode two or
three signals at the same or nearly the same frequency.

7. Message Sequencing
A basic QSO between K1JT and K9AN might consist of the

following messages:

Tx6: CQ K1JT FN20
Tx1: K1JT K9AN EN50

Tx2: K9AN K1JT -10
Tx3: K1JT K9AN R-12

Tx4: K9AN K1JT RRR
Tx5: K1JT K9AN 73

Here the Txn: labels are those used to identify message entry
fields on the WSJT-X user interface. In this model QSO even-
numbered messages are sent by K1JT, odd-numbered messages
(those displaced to the right) by K9AN. Note that all messages
bear the transmitting station’s call sign, and all but the CQ are
explicitly directed to a particular QSO partner. Most QSOs follow
the sequence shown, or a closely related one depending on context,
propagation, and interference conditions. In normal usage, failure
to decode a response from a QSO partner implies repetition of the
previous transmission.

Traditionally, operators have clicked buttons on the user interface
(UI) of WSJT-X [1, 2, 19] and its predecessor WSJT [4-11] to trigger
transmission of the next message in a sequence similar to that
shown above. Protocols with one-minute T/R sequences leave about
10 seconds between decoding and start of the next transmission,
so there is plenty of time to decide upon and activate one’s next
transmission. However, the shorter sequences of FT8 and FT4
require much quicker responses, effectively requiring moderate
amounts of automation built into the software.

If a UI checkbox labeled Auto Seq has been ticked, the software
parses decoded messages to decide whether a valid response for the
standard QSO sequence has been received, directed to “mycall”. If
so, the next message in the sequence is queued and transmitted; if
not, the previous transmission is repeated. This sequence of events
proceeds until a QSO is completed or abandoned by user action.
With a few optional exceptions (“Fox” operation in FT8 DXpedition
mode, and contest operation), user action is also required to verify
QSO details and submit them for logging. In any event, by design
WSJT-X requires that every QSO must be initiated by a human
operator. We do not like the idea of fully robotic operation with
modes like FT4 and FT8, and the WSJT-X software prevents it.

These moderate levels of automation involve considerably more
logic in the software, essentially duplicating the thought processes
of an attentive user progressing through a valid QSO. In typical
operation on a busy HF or VHF band, dozens of valid FT4 or FT8
messages may be decoded in a single receiving sequence. The
receiving software must analyze all of these, determine whether any
is a valid reply in the expected sequence for a QSO already underway,
and take appropriate action. Figure 5 provides a high-level summary
of the six major states of the WSJT-X auto-sequencing behavior.
On program startup, and when Halt Tx is clicked, the logical state
machine is put into the Calling state. Subsequent stages of a standard

Acronyms and abbreviations used in text.
AP a priori, as in AP decoding
AWGN additive white Gaussian noise
BP belief propagation
CPFSK continuous-phase frequency-shift keying
CRC cyclic redundancy check
FEC forward error correction
GFSK Gaussian frequency-shift keying
GPLv3 General Public License, version 3
ISI inter-symbol interference
ITU International Telecommunication Union
LDPC low-density parity check code
MinGW Minimalist GNU for Windows
OSD ordered statistics decoding
SNR signal-to-noise ratio
UI user interface

Reprinted with permission; copyright ARRL.

QEX July/August 2020 13

Figure 5 — Top-level state diagram for standard message sequencing in WSJT-X.

Figure 6 — Example detailed state chart for the high-level “Calling” state shown in Figure 5.

Sequencing

Halt Tx

Replying Report

Roger ReportRogersSignoff

Calling

QSO pass through the Replying, Report, Roger_Report, Rogers, and
Signoff states while proceeding through the sequence of transmitted
and received messages illustrated at the start of this section.

Each major state has its own internal logic that determines what
action will be taken when specifi ed types of messages are received.
An idealized and abbreviated representation of this logic for the
Calling state is presented in Figure 6. Here and in Figure 5 we have
used Unifi ed Modeling Language notation [18], which should be
mostly self-explanatory. For example, the text

[message == Tx1] / Tx message = Tx2

attached to a state transition line has the form “trigger [guard
condition] / action,” so this is a transition that happens automatically
without any triggering event, but only if the just parsed message has
the standard Tx1 format. In this case the transition has a side effect
of setting the next message queued for transmission as the generated
Tx2 message.

The user interface provides options for configuring various
details of the auto-sequencing behavior; please consult the WSJT-X
2.1 User Guide [19] for further details.

Calling

for us
no

yes

message decoded
[auto sequencing armed && Call 1st]

decode double-clicked

no more decodes

Waiting

/ Tx message = Tx6
[AutoSeq] / arm auto sequencing

Parse message

do / disarm auto sequencing
do / extract DX call & grid

do / generate Tx messages

skip Tx1
[message == Tx6]

Tx message == Tx6
no

yes

[message == Tx1] / Tx message = Tx2

[message == Tx2] / Tx message = Tx3

[message == Tx4] / Tx message = Tx5

/ Tx message = Tx1

yes

no

/ Tx message = Tx2

[message == Tx3] / Tx message = Tx4

Reprinted with permission; copyright ARRL.

14 QEX July/August 2020

8. Performance Measurements
While designing FT4 and FT8 we used channel simulations

based on the approach recommended by the ITU [12] to assess the
performance that could be achieved under real-world conditions.
The channel model assumes two independently fading paths with
equal mean attenuation and equal frequency spreads. A channel
is defined by its frequency spread and differential path delay.
Reference [12] specifi es frequency spread and path delay parameters
for quiet, moderately disturbed, and highly disturbed conditions in
low-latitude, mid-latitude, and high-latitude terrestrial regions. The
ITU channels referenced in this paper have differential path delays
that are small compared to FT4 and FT8 symbol durations, so this
parameter has little effect on performance. The size of a channel’s
frequency spread relative to the tone spacing of the mode is the most
important factor determining the extent of performance degradation.

Figure 7 compares FT4 and FT8 performance obtained using
WSJT-X version 2.1 to decode simulated FT4 and FT8 waveforms
under non-fading additive white noise (AWGN) conditions, and
on mid-latitude disturbed and high-latitude moderately disturbed
channels. Table 6 lists the channel parameters and the decoding
threshold for these channels along with the mid-latitude quiet
and mid-latitude moderate channels. FT8 maintains about 3 dB
sensitivity advantage over FT4 on AWGN and mid-latitude channels
where frequency spread is smaller than the tone spacing for both
modes. Frequency spread on the high-latitude channel is larger than

0

0.25

0.5

0.75

1

–20 –15 –10 –5 0

D
ec
od

e
Pr
ob

ab
ili
ty

SNR 2500 (dB)

FT8 AWGN
FT4 AWGN
FT8 Mid disturbed
FT4 Mid disturbed
FT8 High moderate
FT4 High moderate

the FT8 tone spacing and smaller than FT4’s tone spacing, which
explains why FT4 performs best in that case.

Table 6 includes decoding thresholds obtained when the
maximum possible amount of AP information is available.
Maximum AP information provides about 2 dB of additional
sensitivity on less disturbed channels and increasing improvement
as frequency spread increases. On the most disturbed channel, large
improvements of about 5 dB and 10 dB are obtained for FT4 and
FT8, respectively. The trend is similar for scenarios where less AP
information is available.

Figure 8 provides a detailed look at how using AP information
can improve sensitivity as a QSO progresses. The mid-latitude
disturbed channel was used for this set of simulations. The curve
labeled “no AP” is the same as the curve labeled “FT8 Mid
disturbed” Figure 7. The curve labeled “caller” shows sensitivity to
responses to a CQ, or any other message directed to “mycall”. The
curve labeled “report” indicates sensitivity to messages directed to
“mycall”, originating from the known call sign of a QSO partner.
This curve represents the sensitivity to a report or roger-report
message during a QSO. Finally, the curve labeled “RRR/RR73/73”
represents sensitivity to an RRR, RR73, or 73 message from a QSO
partner, at the end of a QSO.

Figure 8 shows a modest sensitivity improvement to a caller
when only “mycall” is used as AP information. The advantages
of such AP information become more signifi cant when the caller
fails to start transmitting at the nominal start time, 0.5 s after the

Table 6 - FT4 and FT8 decoding thresholds measured using simulations. In all cases, the decoder used block
detection and (BP+OSD). For each channel and mode, two decoding thresholds are given. “No AP” is the threshold
when no a priori information is available, and “max. AP” is the decoding threshold with the maximum amount of a
priori information, at the end of a QSO when receiving RRR, 73, or RR73 from a QSO partner.

Channel Frequency Diff. Path FT4 Decoding FT4 Decoding FT8 Decoding FT8 Decoding
Spread (Hz) Delay (ms) Threshold (dB), Threshold (dB), Threshold (dB), Threshold (dB),

no AP max. AP no AP max. AP
AWGN 0.0 0.0 –17.5 –19.5 –20.8 –22.7
Mid-latitude quiet 0.1 0.5 –17.4 –19.4 –20.0 –22.4
Mid-latitude moderate 0.5 1.0 –15.8 –18.6 –18.8 –22.1
Mid-latitude disturbed 1.0 2.0 –15.2 –18.4 –18.6 –22.1
High-latitude moderate 10.0 3.0 –12.2 –17.4 –8.6 –18.9

Figure 7 — Measured decoding probability as a function of SNR for FT8 and FT4, based on simulations for three propagation channels:
additive white Gaussian noise (AWGN), and the ITU standards for mid-latitude disturbed and high-latitude moderate conditions. No AP

information was used for these sensitivity measurements.

Reprinted with permission; copyright ARRL.

QEX July/August 2020 15

beginning of a transmit interval. In such cases, WSJT-X will skip
the missed part of the transmission and start sending a correctly
synchronized message for the remainder. Those receiving such
a truncated message will collect only a fraction of the message
symbols. A common scenario for this occurrence is “late” responses
to a CQ. For example, suppose that G4WJS calls CQ. He knows
that responses to his call will be addressed to G4WJS. The “no AP”
curve in Figure 9 shows that without the use of AP information,
responses from callers who start transmitting more than 5 seconds
after the beginning of a Tx interval will not be decoded. The curve
labeled “AP mycall” shows decoding probability as a function of
start time when the decoder specifi cally looks for responses directed
to G4WJS. In this case transmissions that were started up to 8
seconds late are likely to be decoded successfully.

9. Concluding Remarks and Software License
This paper and the online resources found in reference [14]

provide complete descriptions of the FT4 and FT8 protocols. In the
spirit of open sharing, and to encourage other software developers
who might use some of our ideas, we place this description in the
public domain with the following restrictions:

• Other software implementers may use the names “FT4” and
“FT8” only if they adhere to our protocol defi nitions for source
encoding, error-correction coding, and modulation format.

• Robotic or unattended QSOs must be explicitly disallowed.

• Multi-streaming with waveforms and message content similar
to those used in FT8 DXpedition Mode is permissible only
within the guidelines specifi ed in the WSJT-X 2.1 User Guide
[19].

• Presently unassigned message types (see Table 1) are reserved
for future expansion and must not be assigned without our
permission.

• Any implementation of these or similar protocols that allows
robotic, unattended, or non-conforming multi-streaming
operation shall not use the names “FT4” or “FT8” and must
be made incompatible by some means, such as using different
Costas arrays for synchronization.

With the exception of code contained in reference [14], source
code for our implementations of FT4, FT8, and MSK144 is not in
the public domain. Rather, all code in WSJT-X is copyrighted and
licensed under the terms of Version 3 of the GNU General Public
License (GPLv3), reference [20]. Very briefly stated, GPLv3
guarantees end users the freedom to run, study, and modify the
software, so long as the same licensing terms are extended to any
new software derived from or dependent upon our source code.

We welcome any independent software implementations of
FT4 and FT8, so long as they either (1) adhere to all requirements
mentioned above, or (2) make no use of our source code beyond the
public-domain resources mentioned above. We hope and trust that
many of the innovations pioneered in WSJT-X and its predecessors
will outlive its present developers — and will continue to advance
the art of weak-signal communication by Amateur Radio for many
years to come.

Appendix A. Source Encoding Details
Section 2 of this paper is a summary of how the FT4, FT8, and

MSK144 protocols pioneered in WSJT-X compress and convey
call signs, Maidenhead locators, signal reports, and certain other
information in a very effi cient way. Tables 1 and 2 outline the basic
source-encoding framework, with each message payload comprising
a sequence of fixed-length bit fields. This Appendix completes
the details needed to fully defi ne mappings from human-readable
message fragments to relevant fi elds in the fi xed-size 77-bit message
payload. For the convenience of others who might wish to implement
the FT4 or FT8 protocols, some essential algorithmic parts of the
defi nitions are presented in simple, very short Fortran programs
whose source code we have placed in the public domain [14].

As fi rst steps we shall defi ne the way standard call signs and
4-character Maidenhead locators are encoded into fi elds of just
28 and 15 bits, respectively. As described in the WSJT-X 2.1 User
Guide [19], a standard amateur call sign consists of a one- or two-
character prefi x, at least one of which must be a letter, followed by
a decimal digit and a suffi x of up to three letters. Within these rules,
the number of possible call signs is equal to 373610272727 =

Figure 9 — Decode probability for FT8 when the transmitting
station starts transmitting after the beginning of a 15 s interval.
The simulation was performed for the mid-latitude moderately

disturbed channel, at SNR = –10 dB. The kink in the “AP mycall”
curve at 6.5 s arises because missing symbols from the Costas
array in the middle of the FT8 transmission have little effect on

decoding probability.

0

0.25

0.5

0.75

1

–26 –24 –22 –20 –18 –16

D
ec
od

e
Pr
ob

ab
ili
ty

SNR 2500 (dB)

no AP
caller
report

RRR/
RR73/73

Figure 8 — Decode probability for FT8 on the mid-latitude
disturbed channel using different amounts of a priori (AP)

information. See text for details.

0

0.25

0.5

0.75

1

0 2 4 6 8 10 12

SNR -10dB

D
ec
od

e
Pr
ob

ab
ili
ty

Delay to TX Enable (s)

no AP
AP mycall

Reprinted with permission; copyright ARRL.

16 QEX July/August 2020

262,177,560. (The numbers 27 and 37 arise because in the fi rst and
last three positions a character may be absent, or a letter, or perhaps a
digit.) Since 228 = 268,435,456 is a larger number, 28 bits are enough
to encode any standard call sign uniquely, while leaving 6,257,896
values available for conveying other types of information. A few of
these excess values are assigned to special message components such
as DE, QRZ, and CQ (optionally with a modifi er). A further 222 =
4,194,304 are used to convey 22-bit hash codes for call signs.

Similarly, there are 180180 = 32,400 four-digit Maidenhead grid
locators. This number is less than 215 = 32,768, so a grid locator can
be uniquely represented in 15 bits. Some of the 368 fi fteen-bit values
not needed for grid locators are used to convey numerical signal
reports of the form nn in the range -30 to +99 dB, or a blank, or one
of the words RRR, RR73, or 73.

As a particular example, consider the bit allocations for message
type 1, an essential part of almost all FT4 and FT8 QSOs. These
basic messages usually contain two 28-bit call signs, an optional
acknowledgment R, and a four-character locator, signal report, RRR,
RR73, or 73. Table 1 shows that this message type consists of fi elds
with the tags c28, r1, c28, r1, R1, g15, and i3. The r1
fi elds are normally 0; the value 1 implies a /R call sign suffi x to
indicate “rover” status in a North American VHF contest. The R1
fi eld conveys the absence (0) or presence (1) of an acknowledgment
R before the locator or signal report conveyed by g15. In the fi nal
77-bit information payload, bit fi elds are assembled in the left-to-
right order specifi ed in Table 1, followed by n3 (if used; currently
used only in type 0) and i3.

We now turn to concise descriptions of the algorithms mapping
human-readable message fragments to the tagged bit fi elds with
names listed in Table 2. For this purpose the public-domain Fortran
programs contained in reference [14] are essential. To get started,
download the compressed tarfi le ft4_ft8_protocols.tgz
from the www.arrl.org/QEXfi les web page, unpack it into a suitable
directory and follow simple instructions for your operating system
(Windows, Linux, or macOS) at the top of fi le Makefi le. These
steps will build executables for the seven programs gen_crc14,
free_text_to_f71, grid4_to_g15, grid6_to_g25,
hashcodes, nonstd_to_c58, and std_call_to_c28 whose
purposes are explained below.

In alphabetical order, concise defi nitions for the tagged bit fi elds
listed in Table 2 are as follows:
c1: Used only in message type 4. Normally 0; value 1

denotes a message consisting of CQ and a nonstandard
call sign, for example CQ PJ4/K1ABC.

c28: Used to convey a standard call sign or one of the
special message words CQ, DE, or QRZ, or a 22-bit
call sign hash code. CQ may be followed by a modifi er
with three decimal digits or one to four letters. Each
possible message fragment with CQ, DE, or QRZ is
mapped to a specifi c integer value of c28, as indicated
in Table 7. Call sign values are computed using the
algorithm illustrated by program std_call_to_
c28, and hash codes by program hashcodes.

c58: Used to encode nonstandard call signs up to
11 characters, using the algorithm illustrated
by program nonstd_to_c58.

f71: Conveys arbitrary free text with up to 13 characters
selected from the list
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./?
plus the blank character. The encoding algorithm is
illustrated by program free_text_to_f71.

g15: Encodes a 4-character Maidenhead locator, signal
report, RRR, RR73, 73, or a blank message word,
using the algorithm in program grid4_to_g15.

g25: Encodes a 6-character Maidenhead locator using
the algorithm in program grid6_to_g25.

h10, h12, Call sign hash codes of length 10, 12, or 22 bits. The
h22: hashing algorithm is defi ned in program hashcodes.
k3: ARRL Field Day Class A-F, encoded

as integer values 0 – 5.
n4: In message type 0.3, maximum number of

simultaneously transmitted signals minus 1.
In message type 0.4, maximum number of
simultaneously transmitted signals minus 17.

p1: Absence (0) or presence (1) of call sign suffi x /P.
r1: Absence (0) or presence (1) of call sign suffi x /R.
r2: Value 0 encodes a blank message word;

values 1 – 3 encode RRR, RR73, or 73.
r3: Values 0 – 7 encode a signal report displayed as 52, 53,

… 59 (message type 0.3) or 529, 539, … 599 (type 3).
R1: Absence (0) or presence (1) of

acknowledgment R before grid or report.
r5: Values 0 – 31 convey signal reports –30,

–28, … +32 dB (even numbers only).
s11: Serial number, range 0 – 2047.
s13: Values 0 – 7999 convey a serial number; values

8001 – 8065 encode the abbreviations for US states
and Canadian provinces by means of lookup table
states_provinces.txt included in reference [14].

S7: Values 0 – 83 encode abbreviations for the ARRL/
RAC section names by means of lookup table arrl_
rac_sections.txt included in reference [14].

t1: Absence (0) or presence (1) of TU; at
the start of a type 3 message.

t71: Telemetry data, up to 18 hexadecimal digits
or 71 bits maximum. With 18 digits, the
fi rst digit must fall in the range 0 – 7.

We note here that for FT4 only, in order to avoid transmitting a
long string of zeros when sending CQ messages, the assembled 77-bit
message is bitwise exclusive-OR’ed with the following pseudo-
random sequence before computing the CRC and FEC parity bits:

0100101001011110100010
0110110100101100001000
1010011110010101010110
11111000101

The receiving software applies this exclusive-OR procedure a
second time, to restore the original 77-bit message.

Table 7 - Summary of mappings between message
fragments and numerical values of the bit fi eld c28.

Message fragment c28 as decimal integer
DE 0
QRZ 1
CQ 2
CQ 000 - CQ 999 3 to 1002
CQ A - CQ Z 1004 to 1029
CQ AA - CQ ZZ 1031 to 1731
CQ AAA - CQ ZZZ 1760 to 20685
CQ AAAA - CQ ZZZZ 21443 to 532443
22-bit hash codes 2063592 + (0 to 4194303)
Standard call signs 6257896 + (0 to 268435455)

Reprinted with permission; copyright ARRL.

QEX July/August 2020 17

Steve Franke, K9AN, holds an Amateur Extra class license. He was
fi rst licensed in 1971 and has previously held call signs WN9IIQ and
WB9IIQ. An early and abiding fascination with radio science led to a
35-year career as Professor of Electrical and Computer Engineering
at the University of Illinois. Steve retired in 2019 and now holds the
title Professor Emeritus. He enjoys chasing DX, playing with RF
circuits and antennas, and studying HF and VHF propagation. Steve is
a member of ARRL and a Fellow of the IEEE.

Bill Somerville, G4WJS, earned a Chemistry degree at the
University of Bristol and has worked in computer software and
hardware in a variety of industries including defense, software
development, and fi nancial services. Most recently he’s a freelance
consultant providing systems programming and related services to
mid- to large-size software tool vendors. An active radio amateur
since 1981, Bill enjoys HF and VHF bands, contest operating, and DX
chasing using CW, phone, and data modes.

Joe Taylor was fi rst licensed as KN2ITP in 1954, and has since
held call signs K2ITP, WA1LXQ, W1HFV, VK2BJX and K1JT. He was
Professor of Astronomy at the University of Massachusetts from 1969
to 1981 and since then Professor of Physics at Princeton University,
serving there also as Dean of the Faculty for six years. He was
awarded the Nobel Prize in Physics in 1993 for discovery of the fi rst
orbiting pulsar, leading to observations that established the existence
of gravitational waves. After retirement he has been busy developing
and enhancing digital protocols for weak-signal communication by
Amateur Radio, including JT65 and WSPR. He chases DX from 160
meters through the microwave bands.

References

[1] Joe Taylor, K1JT, Steve Franke, K9AN, and Bill Somerville,
G4WJS, “Work the World with WSJT-X: Part 1, Operating
Capabilities,” QST, Oct. 2017, pp. 30-36.

[2] Joe Taylor, K1JT, Steve Franke, K9AN, and Bill Somerville,
G4WJS, “Work the World with WSJT-X: Part 2, Codes, Modes, and
Cooperative Software Development,” QST, Nov. 2017, pp. 34-39.

[3] “Mode Usage Evaluation: 2017 was ‘the Year When Digital Modes
Changed Forever’,” www.arrl.org/news/mode-usage-evaluation-
2017-was-the-year-when-digital-modes-changed-forever.

[4] Joe Taylor, K1JT, “WSJT: New Software for VHF Meteor-Scatter
Communication,” QST, Dec. 2001, pp. 36-41.

[5] Joe Taylor, K1JT, “EME with JT65,” QST, June 2005, pp. 80–82.
[6] Joe Taylor, K1JT, “The JT65 Communications Protocol,” QEX,

Sep./Oct. 2005, p. 3-12.
[7] Rex Moncur, VK7MO, and Joe Taylor, K1JT, “Small Station EME

at 10 and 24 GHz: GPS Locking, Doppler Correction, and JT4,”
Dubus 2/2013.

[8] Steven J. Franke, K9AN, and Joseph H. Taylor, K1JT, “Open
Source Soft-Decision Decoder for the JT65 (63,12) Reed-Solomon
Code,” QEX, May/June 2016, pp. 8-17.

[9] Steven J. Franke, K9AN, and Joseph H. Taylor, K1JT, “The
MSK144 Protocol for Meteor-Scatter Communication,” QEX, July/
Aug. 2017, pp. 8-14.

[10] Nico Palermo, IV3NWV, “Q-ary Repeat-Accumulate Codes for
Weak Signals Communications,” www.eme2016.org/wp-content/
uploads/2016/08/EME-2016-IV3NWV-Presentation.pdf.

[11] Joe Taylor, K1JT, “WSJT-X: New Codes, Modes and Tools for
Weak-Signal Communication,” www.physics.princeton.edu/
pulsar/K1JT/K1JT_EME_2016_Venice.pdf.

[12] Testing of HF Modems with Bandwidths of up to about 12 kHz
Using Ionospheric Channel Simulators, Recommendation ITU-R
F.1487, International Telecommunications Union, 2000.

[13] Ross N. Williams, “A Painless Guide to CRC Error Detection
Algorithms,” https://www.zlib.net/crc_v3.txt.

[14] http://physics.princeton.edu/pulsar/k1jt/ft4_ft8_protocols.
tgz.

[15] Marvin K. Simon and Dariush Divsalar, “Maximum-Likelihood
Block Detection of Noncoherent Continuous Phase Modulation,”
IEEE Transactions on Communications, Vol. 41, No. 1, Jan. 1993, pp.
90-98.

[16] Shu Lin and Daniel J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, 2nd edition. Pearson Prentice
Hall, 2004.

[17] Yingquan Wu and Christoforos N. Hadjicostis, “Soft-Decision
Decoding of Linear Block Codes Using Preprocessing and
Diversifi cation,” IEEE Transactions on Information Theory, Vol. 53,
No. 1, Jan. 2007, pp. 378-393.

[18] https://en.wikipedia.org/wiki/UML_state_machine.
[19] WSJT Development Group, “WSJT-X 2.1 User Guide,” www.

physics.princeton.edu/pulsar/K1JT/wsjtx-doc/wsjtx-main-
2.1.2.html.

[20] GNU General Public License, GPLv3, https://www.gnu.org/
licenses/gpl-3.0.txt. See also https://en.wikipedia.org/wiki/
GNU_General_Public_License.

Reprinted with permission; copyright ARRL.

